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E-mail: mattik@phys.ethz.ch

Received 26 October 2005, in final form 24 January 2006
Published 22 February 2006
Online at stacks.iop.org/JPhysA/39/2383

Abstract
We construct a boundary Lagrangian for the N = 2 supersymmetric sine-
Gordon model which preserves (B-type) supersymmetry and integrability to
all orders in the bulk coupling constant g. The supersymmetry constraint is
expressed in terms of matrix factorizations.

PACS numbers: 02.30.Ik, 11.25.−w

1. Introduction

Soon after the work of Ghoshal and Zamolodchikov in [1] on factorizable S-matrices and
boundary states in integrable boundary models, Warner considered in [2] boundary theories
which possess in addition a N = 2 supersymmetry structure. The key point of his approach
was to include fermionic fields solely defined on the boundaries as previously introduced in
[1] to ensure unbroken supersymmetries in the boundary theory.

In a similar spirit, Nepomechie thereafter considered supersymmetric extensions of the
sine-Gordon model. In [3, 4] he constructed boundary Lagrangians for the N = 1 and N = 2
cases, establishing supersymmetry and integrability which beforehand were considered to be
incompatible in the presence of boundaries. For a nice review of this development, see [5],
and [8, 9] for further related results.

The authors of [9] especially provide an explanation for the appearance of fermionic
boundary degrees of freedom following [10, 11] by using a perturbative CFT approach. See
also [12] for a classification of admissible boundary conditions in this context.

Whereas the Lagrangian for theN = 1 case in the treatment of [3] is exact, the Lagrangian
from [4] ensures integrability only to first order in the bulk coupling constant g. Up to this
order the boundary Lagrangian contains three free continuous parameters.

The main goal of this paper is to extend the discussion of [4] and to construct a boundary
Lagrangian which preserves supersymmetry and integrability in the sense of a conserved
higher spin quantity as in [4] to all orders in the bulk coupling constant. Our final result
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will contain up to phases and discrete choices only a single free boundary parameter. The
additional parameters from [4] are fixed in our case by constraints of higher order in the bulk
coupling constant.

While our main focus will be the (Lorentzian) N = 2 sine-Gordon theory, the
supersymmetry considerations in the first part are valid for arbitrary superpotentials.

One of our initial motivations to consider the present problem is the appearance of the
sine-Gordon model as the worldsheet theory describing strings in a particular Maldacena–
Maoz background from [13]. These backgrounds are particular pp-wave solutions preserving
at least four spacetime supersymmetries. For a flat transverse space they are exact superstring
solutions [14, 15] whose worldsheet theories in light-cone gauge are given by N = (2, 2)

supersymmetric Landau–Ginzburg models [13].
Branes in these general backgrounds without the inclusion of boundary fields have been

studied in [16]. Our results give rise to additional supersymmetric brane configurations. It
would be interesting to obtain a more detailed understanding of these new branes, in particular
from a spacetime point of view.

Boundary Lagrangians with fermionic excitations as used in [2, 4] appeared recently in a
different string theoretical context in [21, 22]. These authors gave a realization of a suggestion
by Kontsevich to characterize B-type branes in particular Landau–Ginzburg models related
to superconformal field theories in terms of matrix factorizations. This proposal was further
studied in [23–31], see also [32] for a review and further references.

The boundary Lagrangian we will use for the sine-Gordon model is of the same type as
those used in [21, 22]. It would be very interesting to see how to employ the methods of
the previous references in the case of non-homogeneous worldsheet superpotentials to obtain
further insight, for example, into the spectrum of the boundary theory.

Motivated by possible applications in string theory we define the boundary theories in this
paper on a strip with topology R × [0, π ] instead of the half space as in [4]. The differences
have only notational significance and do not affect any conclusions.

A possibly more serious difference compared to [4] derives from our choice of a Lorentzian
worldsheet signature compared to the Euclidean setting in [4]. The structure of the bosonic
fields is almost unaffected by this. Deviating reality properties of the fermions, however, make
a direct comparison of the fermionic sectors subtle and we do not attempt to relate them via a
Wick rotation.

Although the indefinite worldsheet metric does not directly simplify the calculations
concerning the integrability, its consequences in particular in the fermionic sector make reality
requirements more transparent than in [4]. This will be especially helpful for studying the
structure of the boundary potential B(z, z) and the conserved supersymmetries.

The paper is organized as follows. In the subsequent section 2 we will write down
a boundary Lagrangian including fermionic boundary excitations and derive the resulting
boundary conditions. In section 3 we will find conditions under which the boundary theory is
N = 2 supersymmetric. The relevant requirement will be the matrix factorization constraint
from [21, 22].

In the final section 4 the integrability of the boundary theory for the particular sine-Gordon
case will be considered. Additional information such as the explicit component form of the
higher spin conserved currents from [7, 4], are supplied in the appendix.

2. Landau–Ginzburg models and boundary fermions

In the first part we will consider general N = 2 supersymmetric Landau–Ginzburg models
with flat target space and vanishing holomorphic Killing vector term. On worldsheets without
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boundaries these theories are described by the (component) Lagrangian

Lbulk = 1
2gj

(
∂+z

j ∂− z + ∂+ z ∂−zj + iψ


+

↔
∂ − ψ

j
+ + iψ



−
↔
∂ + ψ

j
−
)

− 1
2∂i∂jW(z)ψi

+ψ
j
− − 1

2∂ı∂W(z)ψ
ı

−ψ


+ − 1
4gi ∂iW(z)∂W(z), (1)

with ∂± = ∂t ± ∂σ , compare for example with [17–19].
When defined on a manifold with boundaries, one might either enforce boundary

conditions in addition to the equations of motion from (1) or include boundary terms containing
in particular fermionic boundary degrees of freedom and work with the resulting (boundary)
equations of motion. To the best of our knowledge, the second approach goes back to the
study of integrals of motion and factorizable S-matrices of integrable boundary theories in the
seminal paper [1]. There the authors considered in particular the massive Ising model with
boundary fermions and the bosonic sine-Gordon theory with an additional bosonic boundary
potential.

Comparable boundary Lagrangians have thereafter been adopted in different ways in
[2–4] in the context of supersymmetric integrable boundary field theories. For a construction
of the boundary structure relying on a boundary quantum group, see [9, 10].

As mentioned in the introduction, the approach following [2, 4] has also recently appeared
in a string theory context; compare for example with [21, 22].

In this paper we use a boundary Lagrangian following [4], see also [21, 22], given by

Lσ=π
boundary = i

2
(bψ−ψ+ − b∗ψ+ψ−) − i

2
a

↔
∂ t a + B(z, z)

+
i

2
(F

′
( z)a + G

′
( z)a)(ψ+ + eiβψ−) +

i

2
(G′(z)a + F ′(z)a)(ψ+ + e−iβψ−). (2)

As we will later on restrict attention to superpotentials depending on a single holomorphic
coordinate, the boundary Lagrangian is written down containing only contributions along the
z = z1 direction at σ = π . The Lagrangian (2) is chosen to be manifestly real and the constant
b is determined by consistency of the resulting (fermionic) boundary conditions to b = e−iβ ;
compare for example with [6].

2.1. The boundary conditions

In this part we will determine the boundary conditions resulting from the boundary Lagrangian
(2). They are obtained from the variation of Lboundary together with boundary terms from
partially integrated contributions in δLbulk.

The bosonic part of the bulk contributions from (1) is given by

−giı(δz
i∂σ zı + δzı∂σ zi)

∣∣π
σ=0 = −2δxI ∂σ xI

∣∣π
σ=0, (3)

whereas the fermionic kinetic parts lead to

1
2giı

(−iψ
ı

+δψ
i
+ + iδψ

ı

+ψ
i
+ + iψ

ı

−δψi
− − iδψ

ı

−ψi
−
)∣∣π

σ=0 = i
(
ψI

−δψI
− − ψI

+δψI
+

)∣∣π
σ=0. (4)

Altogether the boundary conditions for the z = z1 direction at σ = π are with these terms
found to be

∂σ z = ∂ zB(z, z) +
i

2
(F

′′
( z)a + G

′′
( z)a)(ψ+ + eiβψ−) (5)

∂ta = 1
2F

′
( z)(ψ+ + eiβψ−) + 1

2G′(z)(ψ+ + e−iβψ−) (6)

ψ+ − e−iβψ− = F
′
( z)a + G

′
( z)a (7)

together with the complex conjugates
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∂σ z = ∂zB(z, z) +
i

2
(G′′(z)a + F ′′(z)a)(ψ+ + e−iβψ−) (8)

∂ta = 1
2G

′
( z)(ψ+ + eiβψ−) + 1

2F ′(z)(ψ+ + e−iβψ−) (9)

ψ+ − eiβψ− = G′(z)a + F ′(z)a. (10)

Setting

A(z) = G′(z)a + F ′(z)a (11)

A(z) = F
′
( z)a + G

′
( z)a (12)

and using the suitable fermionic combinations

θ+ = 1
2 (ψ+ + e−iβψ−) θ+ = 1

2 (ψ+ + eiβψ−)

θ− = 1
2 (ψ+ − e−iβψ−) θ− = 1

2 (ψ+ − eiβψ−)
(13)

ψ+ = θ+ + θ− ψ− = eiβ(θ+ − θ−)

ψ+ = θ+ + θ− ψ− = e−iβ(θ+ − θ−)
(14)

the boundary conditions finally become
∂σ z = ∂ zB(z, z) + iA

′
( z)θ+ (15)

∂ta = F
′
( z)θ+ + G′(z)θ+ (16)

θ− = 1
2A( z) (17)

and
∂σ z = ∂zB(z, z) + iA′(z)θ+ (18)

∂ta = G
′
θ+ + F ′(z)θ+ (19)

θ− = 1
2A(z). (20)

By eliminating the fermionic boundary degrees of freedom in favour of θ−, θ− in (15) and (18),
these bosonic boundary conditions take on the structure with a quadratic fermionic correction
term as already discussed in [20] from a different point of view.

In the next section we will discuss how the so far undetermined holomorphic functions
F,G are related to the superpotential if the boundary theory is to preserve B-type
supersymmetries.

3. Matrix factorization and N = 2 supersymmetry

The Landau–Ginzburg bulk theory of (1) has the four conserved supercurrents [18, 19]

G0
± = gi ∂± zψi

± ∓ i

2
ψ



∓∂W G1
± = ∓gi ∂± zψi

± − i

2
ψ



∓∂W (21)

G
0
± = giψ



±∂±zi ± i

2
ψi

∓∂iW G
1
± = ∓giψ



±∂±zi +
i

2
ψi

∓∂iW, (22)

whose corresponding charges

Q± =
∫ 2π

0
dσG0

±, Q± =
∫ 2π

0
dσG

0
± (23)

represent the usual N = (2, 2) bulk supersymmetry.
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As usual, the introduction of boundaries breaks at least a certain number of bulk
symmetries. As explained in [18], there are essentially two possibilities of preserving a
N = 2 supersymmetry algebra resulting from (21) and (22). Here we will concentrate on the
so-called B type case.

Following [1, 18], the (B type) supersymmetries take on the general form

Q = Q+ + eiβQ− + 	π(t) − 	0(t) (24)

Q† = Q+ + e−iβQ− + 	π(t) − 	0(t) (25)

which includes (local) contributions of the boundary fields at σ = π and σ = 0. Using the
conservation of the bulk fluxes (21) and (22), the boundary supersymmetries Q,Q† are time
independent, that is, conserved, if the fluxes fulfil the equations

0 = G
1
+ + eiβG

1
−
∣∣
σ=π

− 	̇π (t) (26)

0 = G
1
+ + eiβG

1
−
∣∣
σ=0 − 	̇0(t) (27)

together with their corresponding complex conjugates.
The boundary field 	π(t) (	0(t)) is here required to depend only on the bulk fields and

their time derivatives at time t evaluated at σ = π (σ = 0) and the boundary degrees of
freedom a(t) and a(t).

3.1. W -factorization

In this section, we will solve the equation (26) to obtain a condition for the boundary fields
F(z),G(z) and the boundary potential B(z, z) for N = 2 supersymmetric branes.

From (26) and (22) we obtain

∂t	π(t)
!= G

1
+ + eiβG

1
−

= −ψ+∂+z + eiβψ−∂−z +
i

2
(ψ− + eiβψ+)∂zW (28)

evaluated at σ = π . Upon partial integration (28) leads to

∂τ	π(t) = −∂tz(ψ+ − eiβψ−) − ∂σ z(ψ+ + eiβψ−) +
i

2
∂zW(z)(ψ− + eiβψ+)

= −∂t (2zθ−) + z((G′′(z)ża + F ′′(z)ża) + (G′(z)ȧ + F ′(z)ȧ))

− 2θ+∂ zB(z, z) + i eiβθ+∂zW(z) (29)

from which we get

∂t	π(t) = −∂t (2zθ− − p(z)a − q(z)a) + (zG′′(z) − q ′(z))ża + (zF ′′(z) − p′(z))ża
+ (zG′(z) − q(z))ȧ + (zF ′(z) − p(z))ȧ − 2θ+∂ zB(z, z) + i eiβθ+∂zW(z).

(30)

Using

q ′(z) = zG′′(z) ⇒ q(z) = zG′(z) − G(z) (31)

and

p′(z) = zF ′′(z) ⇒ p(z) = zF ′(z) − F(z) (32)

together with the equations of motion for a and a we finally arrive at

∂t	π(t) = −∂t (2zθ− − p(z)a − q(z)a) + θ+(G(z)F ′(z) + F(z)G′(z) + ieiβ∂zW(z))

+ 2θ+
(

1
2G(z)G

′
( z) + 1

2F(z)F
′
( z) − ∂ zB(z, z)

)
. (33)
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The conditions for N = 2 supersymmetry therefore read

W(z) = i e−iβF (z)G(z) + const (34)

B(z, z) = 1
2 (F (z)F ( z) + G(z)G( z)) + const (35)

and the local boundary field 	π appearing in the ‘boundary adjusted’ supercharges (24) and
(25) is given by

	π = −2zθ− + (zF ′ − F)a + (zG′ − G)a. (36)

It explicitly contains contributions from the fermionic boundary degrees of freedom; compare
for example with the results in [9].

The condition (34) is of course identical to the matrix factorization condition from
[21, 22], whereas (35) so far only determines the structure of the boundary potential B(z, z).
It does not lead to a condition on F,G as the boundary potential remains functionally
undetermined by the supersymmetry considerations.

In the context of matrix factorizations in string theory as in [21, 22] and the literature
mentioned in the introduction the focus is on quasi-homogeneous superpotentials which lead
in the infrared to a superconformal field theory. The latter requires a conserved U(1) R-charge
which should also be present in the boundary theory; compare for example with [31]. This
additional condition requires factorizations of W into quasi-homogeneous functions.

It is worth pointing out that there is no corresponding restriction on F and G in our
case. Integrability together with supersymmetry in the context of the boundary Lagrangian
(2) will give particular trigonometric functions in the case of the sine-Gordon model, but
supersymmetry on its own allows for more general choices.

Extending our treatment, one might, following [9], add purely bosonic boundary degrees
of freedom to (2). This opens up the possibility for more general choices of F and G even
when enforcing supersymmetry and integrability. We will not consider this possibility in this
paper.

4. The N = 2 boundary sine-Gordon model

From now on we will specify the superpotential to

W(z) = −iλ cos(ωz), (37)

and restrict attention therefore to the N = 2 supersymmetric sine-Gordon model1.
When defined on a manifold without boundaries this theory is well known to be a

supersymmetric and integrable extension of the purely bosonic sine-Gordon theory [7]. Its
first nontrivial conserved higher spin currents on whose conservation in the presence of a
boundary we will concentrate in the following, were derived in [7, 4]. In our conventions they
are given in appendix A.

By using (37) in (1), one can immediately derive the bulk equations of motion. They are
given by

∂+∂−z = −ig sin z ψ−ψ+ − g2 sin z cos z (38)

∂+∂− z = ig sin z ψ+ψ− − g2 cos z sin z (39)

∂−ψ+ = g cos z ψ− (40)

1 The phase accompanying the real coupling constant λ is chosen for later convenience. Its form does not affect
purely bosonic terms in the Lagrangian (1). In the fermionic parts of (1) it can be absorbed in a redefinition
ψ± → eiαψ±, ψ± → e−iαψ±.
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∂−ψ+ = g cos z ψ− (41)

∂+ψ− = −g cos z ψ+ (42)

∂+ψ− = −g cos z ψ+, (43)

where we set ω = 1 and redefined the bulk coupling constant to g = λ
2 , resembling the choices

in [4].

4.1. Integrability in the presence of a boundary

In this section we will consider theN = 2 sine-Gordon model in the presence of a boundary and
derive conditions under which the following ‘energy-like’ combination of the bulk conserved
quantities

I3 =
∫ π

0
dσ(T4 + T 4 − θ2 − θ2) − 	(3)

π (t) + 	
(3)
0 (t) (44)

is conserved when using the boundary Lagrangian (2). The inclusion of local boundary
currents as 	

(3)
0 (t) and 	(3)

π (t) goes back to [1]. Their appearance is by now a well-known and
frequently used feature in the context of integrable boundary field theories. It is in particular
independent of the in our case present supersymmetries. The conservation of a higher spin
quantity like I3 is usually regarded as providing strong evidence for the integrability of the
underlying two dimensional (boundary) field theory.

As previously done in section 3 for the supercurrents (21), (22) in (24) and (25), the
quantity I3 is conserved if the condition

∂t	
(3)
π = T4 − T 4 + θ2 − θ2 (45)

holds at σ = π . In deriving (45) we have used the equations (A.5) and (A.6) from appendix A.
As before, there is an identical equation at σ = 0.

Due to the complexity of the conserved currents as given in appendix A, the calculation
transforming the right hand side of (45) to a total time derivative is rather lengthy and intricate.
It nevertheless follows a straightforward strategy which in our case differs slightly from the
approach in [4].

In a first step we use the equations of motion (38)–(43) and the bosonic boundary
conditions (15) and (18) to remove all σ derivatives on the bosonic and fermionic fields
appearing in T4, T 4, θ2, θ2.

In a second step we remove (where possible) all time derivatives on the fermionic fields θ+

and θ+ by partial integration and apply the identities from appendix B to furthermore replace
θ− and θ− and their time derivatives by the fermionic boundary fields a and a.

In doing so a large number of terms cancel manifestly. There are, however, other terms
as for example those proportional to combinations like (θ+∂tθ+) or (θ+θ+) which cannot be
reduced further and which cannot be written as a time derivative of a local field. Their
prefactors given by expressions containing the boundary potential B(z, z) and the functions
F(z),G(z) and their derivatives therefore necessarily have to vanish.

Together with the conditions (35) and (34) for the N = 2 supersymmetry these resulting
differential equations actually will be seen to determine the boundary Lagrangian up to two
possible choices for the boundary potential including a free parameter and two additional
(discrete) choices in prefactors appearing in the functions F and G.

In the following we will write down the differential equations determined as explained
above and give their solutions. The explicit form of the boundary field 	(3)

π appearing in (44)
will be provided in the appendix.
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4.2. The boundary potential B(z, z)

As explained in [4], the boundary potential B(z, z) is already determined from the purely
bosonic terms (A.1), (A.3) and (A.3), (A.4). The differential equations for the real field B
read

0 = ∂z∂z∂ zB + 1
4∂ zB (46)

0 = ∂ z∂ z∂zB + 1
4∂zB (47)

together with

∂z∂zB = ∂ z∂ zB. (48)

This determines B to

B(z, z) = α cos
z − z0

2
cos

z − z0

2
+ b, α, b ∈ R, z0 ∈ C (49)

which is so far exactly the result of [4]. Together with (35) we will nevertheless find further
conditions on the so far unspecified constant z0 which come from contributions of higher order
in the bulk coupling constant g than considered in [4].

4.3. The boundary functions F,G, and F,G

From terms quadratic in the fermionic degrees of freedom as for example from

16i(∂t z)
3
(
A′′′(z) + 1

4A′(z)
)
θ+ (50)

and

48i ∂tz∂t
2z

(
A′′(z) + 1

4A
)
θ+ (51)

we obtain the differential equations

0 = A′′(z) + 1
4A(z) (52)

0 = ∂z[F
′(z)G′(z)] + 1

2g sin z eiβ (53)

together with the corresponding complex conjugates.
From (52) and (11), (12) the functions F(z) and G(z) are determined to

F(z) = A0 cos
z − κ1

2
+ C0 (54)

G(z) = B0 cos
z − κ2

2
+ D0, (55)

and the equation (53) becomes with the matrix factorization condition (34)

0 = F ′
(

G′′ +
1

4
G

)
+ G′

(
F ′′ +

1

4
F

)

= −1

8

(
A0D0 sin

z − κ1

2
+ B0C0 sin

z − κ2

2

)
. (56)

By combining these results with the expression for B(z, z) found in (35), we can in the next
step deduce conditions on the so far free parameters in (54), (55) and (49).

Using (54) and (55) in the differentiated condition (34), we obtain

2g eiβ sin z = −A0B0

2
cos

κ1 + κ2

2
sin z +

A0B0

2
sin

κ1 + κ2

2
cos z (57)
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and therefore

κ1 + κ2 = 2πn n ∈ Z (58)

2g eiβ = − 1
2A0B0(−)n. (59)

A constraint on z0 appearing in the boundary potential B comes from equation (35). In
particular, we have

∂z∂ zB(z, z) = 1
2 (F ′F

′
+ G′G

′
). (60)

Using (49) and (54), (55) evaluated at z = z0, we get

0 = A0A0 sin
z0 − κ1

2
sin

z0 − κ1

2
+ B0B0 sin

z0 − κ2

2
sin

z0 − κ2

2
(61)

and therefore

0 = sin
z0 − κ1

2
, 0 = sin

z0 − κ2

2
. (62)

Together with (58) and the observation that the boundary Lagrangian (2) does not depend
on the constants C0,D0 in (54) and (55), we therefore obtain the two following possibilities
ensuring integrability in the sense discussed above.

Case I:

B(z, z) = α cos
z

2
cos

z

2
, F (z) = A0 cos

z

2
, G(z) = B0 cos

z

2
(63)

with

A0B0 = −4g eiβ, A0A0 + B0B0 = 2α (64)

Case II:

B(z, z) = α sin
z

2
sin

z

2
, F (z) = A0 sin

z

2
, G(z) = B0 sin

z

2
(65)

with

A0B0 = 4g eiβ, A0A0 + B0B0 = 2α. (66)

From (64) and (66) we have, in both cases,

A0A0 = α ±
√

α2 − 16g2 (67)

and therefore

A±
0 = eiγ

√
α ±

√
α2 − 16g2. (68)

The undetermined phase γ appearing in (67) can be absorbed in a redefinition of the fermionic
boundary fields a and a. From (67) we furthermore have the condition

α � 4g � 0 (69)

which in particular leads to a positive, semidefinite boundary potential B(z, z) in (2).
With these choices all remaining terms in (45) either vanish or can be written as a total

time derivative as a rather long calculation shows. This ensures therefore the conservation of
the higher spin quantity (44) in the presence of a boundary to all orders in the bulk coupling
constant g, providing strong evidence for integrability.

To first order in g, the condition (60) together with (66) and (67) does not give a constraint
on F and G and one reobtains the situation of [4] where the two additional (real) parameters
expressed by z0 of the boundary potential in (49) were found to be compatible with integrability
to that order.
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5. Conclusions

Following [2, 4, 21, 22], we constructed boundary Lagrangians which establish supersymmetry
and integrability in the sense of a conserved higher spin current for the (Lorentzian) N = 2
supersymmetric sine-Gordon model defined on the strip or the half space.

In contradistinction to [4], our Lagrangians are exact to all orders in the bulk coupling
constant g. Apart from phases and the bulk coupling constant g, both possible choices contain
a single continuous parameter α. The additional free complex parameter z0 appearing in [4]
is in our case essentially fixed to z0 = 0 or z0 = π .

The ansatz (2) for the boundary Lagrangian secures supersymmetry for a general
superpotential if the boundary functions F,G fulfil the matrix factorization condition (34).
Following [9], one might, furthermore, add purely bosonic boundary degrees of freedom to
(2). It would be interesting to study this situation in greater detail.

As mentioned in the introduction, one can readily apply the present setup to the
construction of branes in Maldacena–Maoz backgrounds [13] leading to branes that generalize
the constructions of [16]. This will be considered elsewhere.

Apart from the construction of further branes in Maldacena–Maoz backgrounds it would
be interesting to obtain a more detailed (spacetime) interpretation of the boundary fermions and
the corresponding branes. At least for the integrable sine-Gordon case it might furthermore
be possible to derive detailed information about the string spectrum by using methods like the
thermodynamic Bethe Ansatz, see for example [33–37], and [38] for a related setting.
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Appendix A. Higher spin conserved currents

Using the superfield approach from [7], the first higher spin conserved bulk currents for the
N = 2 supersymmetric sine-Gordon model were determined in components by Nepomechie
in [4] to (in our conventions)

T4 = −(∂+ z)3∂+z − (∂+z)
3∂+ z + 2∂2

+ z∂2
+z − iψ+∂+ψ+[(∂+ z)2 + 3(∂+z)

2]

− 2iψ+∂+ψ+(∂+ z)2 − 2iψ+ψ+∂+ z∂2
+ z + 2i∂+ψ+∂

2
+ψ+ (A.1)

θ2 = g2 sin z sin z[(∂+ z)2 + (∂+z)
2] − 2g2 cos z cos z∂+z∂+ z − ig cos zψ−ψ+[(∂+ z)2 + (∂+z)

2]

− 2ig sin z∂+z[−ψ+∂+ψ− + ψ−∂+ψ+] + 2ig cos z∂+ψ−∂+ψ+

= g2 sin z sin z[(∂+ z)2 + (∂+z)
2] − 2g2 cos z cos z∂+z∂+ z

− 2ig2 sin z cos z∂+zψ+ψ+ − 2ig2 cos z cos zψ+∂+ψ+

− ig cos zψ−ψ+[(∂+ z)2 + (∂+z)
2] − 2ig sin z∂+zψ−∂+ψ+ (A.2)

and

T 4 = −(∂− z)3∂−z − (∂−z)3∂− z + 2∂2
− z∂2

−z − iψ−∂−ψ−[(∂− z)2 + 3(∂−z)2]

− 2iψ−∂−ψ−(∂− z)2 − 2iψ−ψ−∂− z∂2
− z + 2i∂−ψ−∂2

−ψ− (A.3)
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θ2 = g2 sin z sin z[(∂− z)2 + (∂−z)2] − 2g2 cos z cos z∂−z∂− z

− ig cos zψ−ψ+[(∂− z)2 + (∂−z)2]

− 2ig sin z∂−z(−ψ+∂−ψ− + ψ−∂−ψ+) + 2ig cos z∂−ψ−∂−ψ+

= g2 sin z sin z[(∂− z)2 + (∂−z)2] − 2g2 cos z cos z∂−z∂− z

− 2ig2 sin z cos z∂−zψ−ψ− + 2ig2 cos z cos z∂−ψ−ψ−
− ig cos zψ−ψ+[(∂− z)2 + (∂−z)2] + 2ig sin z∂−zψ+∂−ψ−. (A.4)

By using the equations of motion the currents fulfil

∂−T4 = ∂+θ2 (A.5)

∂+T 4 = ∂−θ2, (A.6)

and are therefore leading to conserved spin 3 quantities in the bulk theory.

Appendix B. A(z), A( z)-identities

Using the boundary conditions (15)–(20) we have the following identities at σ = π used in
the boundary expansion of the bulk conserved currents T4, T 4 and θ2, θ2

∂tθ− = 1
2∂tA( z) = 1

2A
′
( z)∂t z + F

′
G

′
θ+ + ∂z∂ zBθ+ (B.1)

∂tθ− = 1
2∂tA(z) = 1

2A′(z)∂tz + ∂z∂ zBθ+ + F ′G′θ+ (B.2)

∂tA
′(z) = A′′(z)∂tz + 2∂z∂z∂ zBθ+ + ∂z(G

′F ′)θ+ (B.3)

∂tA
′
( z) = A

′′
( z)∂t z + ∂ z(F

′
G

′
)θ+ + 2∂z∂ z∂ zBθ+ (B.4)

and

∂tA
′′(z) = A′′′(z)∂tz + (G′′′G

′
+ F ′′′F

′
)θ+ + (G′′′F ′ + F ′′′G′)θ+ (B.5)

∂tA
′′
( z) = A

′′′
( z)∂t z + (F

′′′
G

′
+ G

′′′
F

′
)θ+ + (F

′′′
F ′ + G

′′′
G′)θ+. (B.6)

Quadratic fermionic terms as A(z)A( z), furthermore, lead to identities like

A(z)A( z) = (G′(z)G
′ − F ′(z)F

′
( z))aa (B.7)

A(z)A′(z) = (G′(z)F ′′(z) − F ′(z)G′′(z))aa. (B.8)

Appendix C. The boundary current Σ(3)
π (t)

In this appendix we present the explicit form of the local boundary term 	(3)
π (t) appearing in

the conserved quantity (44). It is given by

	(3)
π (t) = 16i∂t

2zA′(z)θ+ + 16i∂2
t zA

′
( z)θ+ + 8∂z∂zB(∂tz)

2 + 8∂ z∂ zB(∂t z)
2 + 16∂z∂ zB∂t z∂tz

+ 8ig2 sin z cos zA′(z)θ+ + 8ig2 sin z cos zA
′
( z)θ+ − 4iθ−θ+((∂zB)2

+ 3(∂ zB)2) − 4iθ−θ+((∂t z)
2 + 3(∂t z)

2) − 8iθ−θ+((∂t z)
2 + (∂zB)2)

− 16ig cos z eiβ(θ+∂tθ+ − θ−∂tθ−) + 32i∂tθ−∂tθ+ + 16ig2 cos z cos zθ+θ−
− 8ig sin z e−iβ∂zBθ+θ− + 16iθ+A

′
( z)∂t

2 z − 16iA′(z)∂t
2zθ+

+ 32i∂z∂z∂ zB∂tzθ+θ+ + 16i(∂t z)
2θ+A

′′
( z) − 16i(∂t z)

2A′′(z)θ+

− 8ig2 cos z cos zθ−θ+ + 8ig sin z eiβ∂ zBθ−θ+ − 8i∂zB∂t zθ−θ−
+ 16∂zBA′(z)θ−θ+θ+ + H1(z, z) + H2(z, z) (C.1)
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with

∂zH1(z, z) = (−2(∂zB)3 − 6∂zB(∂ zB)2) (C.2)

∂ zH1(z, z) = (−2(∂ zB)3 − 6∂ zB(∂zB)2) (C.3)

and

∂zH2(z, z) = +4g2[sin z sin z∂ zB − cos z cos z∂zB

+ 2 sin z cos z∂z∂zB + 2 cos z sin z∂z∂ zB] (C.4)

∂ zH2(z, z) = +4g2[sin z sin z∂zB − cos z cos z∂ zB

+ 2 sin z cos z∂z∂ zB + 2 cos z sin z∂ z∂ zB]. (C.5)

For the choice B(z, z) = α sin z
2 sin z

2 , these functions read

H1(z, z) = 1
12α2(−4 + cos z + cos z + 2 cos z cos z)B(z, z) (C.6)

H2(z, z) = 4g2B(z, z). (C.7)

References

[1] Ghoshal S and Zamolodchikov A 1994 Boundary S-matrix and boundary state in two-dimensional integrable
quantum field theory Int. J. Mod. Phys. A 9 3841 (Preprint hep-th/9306002)

[2] Warner N P 1995 Supersymmetry in boundary integrable models Nucl. Phys. B 450 663 (Preprint
hep-th/9506064)

[3] Nepomechie R I 2001 The boundary supersymmetric sine-Gordon model revisited Phys. Lett. B 509 183
(Preprint hep-th/0103029)

[4] Nepomechie R I 2001 The boundaryN = 2 supersymmetric sine-Gordon model Phys. Lett. B 516 376 (Preprint
hep-th/0106207)

[5] Nepomechie R I 2004 Integrability + Supersymmetry + Boundary: life on the edge is not so dull after all!
Preprint hep-th/0406124

[6] Ameduri M, Konik R and LeClair A 1995 Boundary sine-Gordon interactions at the free fermion point Phys.
Lett. B 354 376 (Preprint hep-th/9503088)

[7] Kobayashi K and Uematsu T 1991 N = 2 supersymmetric sine-Gordon theory and conservation laws Phys.
Lett. B 264 107

[8] Nepomechie R I 2001 Boundary S matrices with N = 2 supersymmetry Phys. Lett. B 516 161 (Preprint
hep-th/0106223)

[9] Baseilhac P and Koizumi K 2003 N = 2 boundary supersymmetry in integrable models and perturbed boundary
conformal field theory Nucl. Phys. B 669 417 (Preprint hep-th/0304120)

[10] Baseilhac P and Koizumi K 2003 Sine-Gordon quantum field theory on the half-line with quantum boundary
degrees of freedom Nucl. Phys. B 649 491 (Preprint hep-th/0208005)

[11] Baseilhac P and Delius G W 2001 Coupling integrable field theories to mechanical systems at the boundary
J. Phys. A: Math. Gen. 34 8259 (Preprint hep-th/0106275)

[12] Baseilhac P 2005 Deformed Dolan-Grady relations in quantum integrable models Nucl. Phys. B 709 491
(Preprint hep-th/0404149)

[13] Maldacena J and Maoz L 2002 Strings on pp-waves and massive two dimensional field theories J. High Energy
Phys. JHEP12(2002)046 (Preprint hep-th/0207284)

[14] Berkovits N and Maldacena J 2002 N = 2 superconformal description of superstring in Ramond-Ramond plane
wave backgrounds J. High Energy Phys. JHEP10(2002)059 (Preprint hep-th/0208092)

[15] Russo J G and Tseytlin A A 2002 A class of exact pp-wave string models with interacting light-cone gauge
actions J. High Energy Phys. JHEP09(2002)035 (Preprint hep-th/0208114)

[16] Hikida Y and Yamaguchi S 2003 D-branes in pp-waves and massive theories on worldsheet with boundary
J. High Energy Phys. JHEP01(2003)072 (Preprint hep-th/0210262)

[17] Hori K and Vafa C 2000 Mirror symmetry Preprint hep-th/0002222
[18] Hori K, Iqbal A and Vafa C 2000 D-Branes and mirror symmetryPreprint hep-th/0005247

http://dx.doi.org/10.1142/S0217751X94001552
http://www.arxiv.org/abs/hep-th/9306002
http://dx.doi.org/10.1016/0550-3213(95)00402-E
http://www.arxiv.org/abs/hep-th/9506064
http://dx.doi.org/10.1016/S0370-2693(01)00534-2
http://www.arxiv.org/abs/hep-th/0103029
http://dx.doi.org/10.1016/S0370-2693(01)00914-5
http://www.arxiv.org/abs/hep-th/0106207
http://www.arxiv.org/abs/hep-th/0406124
http://dx.doi.org/10.1016/0370-2693(95)00614-Q
http://www.arxiv.org/abs/hep-th/9503088
http://dx.doi.org/10.1016/0370-2693(91)90711-X
http://dx.doi.org/10.1016/S0370-2693(01)00924-8
http://www.arxiv.org/abs/hep-th/0106223
http://dx.doi.org/10.1016/j.nuclphysb.2003.08.002
http://www.arxiv.org/abs/hep-th/0304120
http://dx.doi.org/10.1016/S0550-3213(02)00980-X
http://www.arxiv.org/abs/hep-th/0208005
http://dx.doi.org/10.1088/0305-4470/34/40/304
http://www.arxiv.org/abs/hep-th/0106275
http://dx.doi.org/10.1016/j.nuclphysb.2004.12.016
http://www.arxiv.org/abs/hep-th/0404149
http://dx.doi.org/10.1088/1126-6708/2002/12/046
http://www.arxiv.org/abs/hep-th/0207284
http://dx.doi.org/10.1088/1126-6708/2002/10/059
http://www.arxiv.org/abs/hep-th/0208092
http://dx.doi.org/10.1088/1126-6708/2002/09/035
http://www.arxiv.org/abs/hep-th/0208114
http://dx.doi.org/10.1088/1126-6708/2003/01/072
http://www.arxiv.org/abs/hep-th/0210262
http://www.arxiv.org/abs/hep-th/0002222
http://www.arxiv.org/abs/hep-th/0005247


Integrability of the N = 2 boundary sine-Gordon model 2395

[19] Vafa C and Zaslow E (ed) 2003 Mirror Symmetry (Clay Mathematics Monographs) (Providence, RI: American
Mathematical Society)

[20] Lindström U and Zabzine M 2003 N = 2 boundary conditions for non-linear sigma models and Landau-
Ginzburg models J. High Energy Phys. JHEP02(2003)006 (Preprint hep-th/0209098)

[21] Kapustin A and Li Y 2003 D-branes in Landau-Ginzburg models and algebraic geometry J. High Energy Phys.
JHEP12(2003)005 (Preprint hep-th/0210296)

[22] Brunner I, Herbst M, Lerche W and Scheuner B 2003 Landau-Ginzburg realization of open string TFT Preprint
hep-th/0305133

[23] Kapustin A and Li Y 2004 Topological correlators in Laundau-Ginzburg models with boundaries Adv. Theor.
Math. Phys. 7 727 (Preprint hep-th/0305136)

[24] Lazaroiu C I 2005 On the boundary coupling of topological Landau-Ginzburg models J. High Energy Phys.
JHEP05(2005)037 (Preprint hep-th/0312286)

[25] Herbst M and Lazaroiu C I 2005 Localization and traces in open-closed topological Landau-Ginzburg models
J. High Energy Phys. JHEP05(2005)044 (Preprint hep-th/0404184)

[26] Brunner I, Herbst M, Lerche W and Walcher J 2004 Matrix factorization and mirror symmetry: the cubic curve
Preprint hep-th/0408243

[27] Walcher J 2005 Stability of Landau-Ginzburg branes J. Math. Phys. 46 082305 (Preprint hep-th/0412274)
[28] Brunner I and Gaberdiel M R 2005 Matrix factorisation and permutation branes J. High Energy Phys.

JHEP07(2005)012 (Preprint hep-th/0503207)
[29] Brunner I and Gaberdiel M R 2005 The matrix factorisations of the d-model J. Phys. A: Math. Gen. 38 7901

(Preprint hep-th/0506208)
[30] Enger H, Recknagel A and Roggenkamp D 2005 Permutation branes and linear matrix factorisation Preprint

hep-th/0508053
[31] Hori K and Walcher J 2005 F-term equations near Gepner points J. High Energy Phys. JHEP01(2005)008

(Preprint hep-th/0404196)
[32] Hori K and Walcher J 2004 D-branes from matrix factorizations C. R. Phys. 5 1061 (Preprint hep-th/0409204)
[33] LeClair A, Mussardo G, Saleur H and Skorik S 1995 Boundary energy and boundary states in integrable quantum

field theories Nucl. Phys. B 453 581 (Preprint hep-th/9503227)
[34] Moriconi M and Schoutens K 1996 Thermodynamic Bethe ansatz for N = 1 supersymmetric theories Nucl.

Phys. B 464 472 (Preprint hep-th/9511008)
[35] Bazhanov V V, Lukyanov S L and Zamolodchikov A B 1997 Integrable quantum field theories in finite volume:

excited state energies Nucl. Phys. B 489 487 (Preprint hep-th/9607099)
[36] Dorey P and Tateo R 1996 Excited states by analytic continuation of TBA equations Nucl. Phys. B 482 639

(Preprint hep-th/9607167)
[37] Dorey P, Pocklington A, Tateo R and Watts G 1998 TBA and TCSA with boundaries and excited states Nucl.

Phys. B 525 641 (Preprint hep-th/9712197)
[38] Tirziu A and Fendley P 2004 Strings on type II B pp-wave backgrounds with interacting massive theories on

the worldsheet J. High Energy Phys. JHEP03(2004)027 (Preprint hep-th/0310074)

http://dx.doi.org/10.1088/1126-6708/2003/02/006
http://www.arxiv.org/abs/hep-th/0209098
http://dx.doi.org/10.1088/1126-6708/2003/12/005
http://www.arxiv.org/abs/hep-th/0210296
http://www.arxiv.org/abs/hep-th/0305133
http://www.arxiv.org/abs/hep-th/0305136
http://dx.doi.org/10.1088/1126-6708/2005/05/037
http://www.arxiv.org/abs/hep-th/0312286
http://dx.doi.org/10.1088/1126-6708/2005/05/044
http://www.arxiv.org/abs/hep-th/0404184
http://www.arxiv.org/abs/hep-th/0408243
http://dx.doi.org/10.1063/1.2007590
http://www.arxiv.org/abs/hep-th/0412274
http://dx.doi.org/10.1088/1126-6708/2005/07/012
http://www.arxiv.org/abs/hep-th/0503207
http://dx.doi.org/10.1088/0305-4470/38/36/008
http://www.arxiv.org/abs/hep-th/0506208
http://www.arxiv.org/abs/hep-th/0508053
http://dx.doi.org/10.1088/1126-6708/2005/01/008
http://www.arxiv.org/abs/hep-th/0404196
http://dx.doi.org/10.1016/j.crhy.2004.09.016
http://www.arxiv.org/abs/hep-th/0409204
http://dx.doi.org/10.1016/0550-3213(95)00435-U
http://www.arxiv.org/abs/hep-th/9503227
http://dx.doi.org/10.1016/0550-3213(95)00649-4
http://www.arxiv.org/abs/hep-th/9511008
http://dx.doi.org/10.1016/S0550-3213(97)00022-9
http://www.arxiv.org/abs/hep-th/9607099
http://dx.doi.org/10.1016/S0550-3213(96)00516-0
http://www.arxiv.org/abs/hep-th/9607167
http://dx.doi.org/10.1016/S0550-3213(98)00339-3
http://www.arxiv.org/abs/hep-th/9712197
http://dx.doi.org/10.1088/1126-6708/2004/03/027
http://www.arxiv.org/abs/hep-th/0310074

	1. Introduction
	2. Landau--Ginzburg models and boundary fermions
	2.1. The boundary conditions

	3. Matrix factorization and
	3.1. -factorization

	4. The
	4.1. Integrability in the presence of a boundary
	4.2. The boundary potential
	4.3. The boundary functions

	5. Conclusions
	Acknowledgments
	Appendix A. Higher spin conserved currents
	Appendix B. identities
	Appendix C. The boundary current
	References

